
 - 1 -

Advances, Applications and Performance of the Global
Arrays Shared Memory Programming Toolkit

Jarek Nieplocha, Bruce Palmer, Vinod Tipparaju, Manojkumar Krishnan, Harold Trease

Computational Sciences and Mathematics Department
Pacific Northwest National Laboratory

Richland, WA 99352

Edoardo Aprà

William R. Wiley Environmental Molecular Sciences Laboratory
Pacific Northwest National Laboratory

Richland, WA 99352

Abstract

This paper describes capabilities, evolution, performance, and applications of the Global
Arrays (GA) toolkit. GA was created to provide application programmers with an interface
that allows them to distribute data while maintaining the type of global index space and
programming syntax similar to what is available when programming on a single processor.
The goal of GA is to free the programmer from the low level management of communication
and allow them to deal with their problems at the level at which they were originally
formulated. At the same time, compatibility of GA with MPI enables the programmer to take
advantage of the existing MPI software/libraries when available and appropriate. The variety
of applications that have been implemented using Global Arrays attests to the attractiveness
of using higher level abstractions to write parallel code.

 - 2 -

1. Introduction
The two predominant classes of programming models for MIMD concurrent computing are
distributed memory and shared memory. Both shared memory and distributed memory
models have advantages and shortcomings. Shared memory model is much easier to use but it
ignores data locality/placement. Given the hierarchical nature of the memory subsystems in
modern computers this characteristic can have a negative impact on performance and
scalability. Careful code restructuring to increase data reuse and replacing fine grain
load/stores with block access to shared data can address the problem and yield performance
for shared memory that is competitive with message-passing [1]. However, this performance
comes at the cost of compromising the ease of use that the shared memory model advertises.
Distributed memory models, such as message-passing or one-sided communication, offer
performance and scalability but they are difficult to program.

The Global Arrays toolkit [2-4] attempts to offer the best features of both models. It
implements a shared-memory programming model in which data locality is managed by the
programmer. This management is achieved by calls to functions that transfer data between a
global address space (a distributed array) and local storage (Figure 1). In this respect, the GA
model has similarities to the distributed shared-memory models that provide an explicit
acquire/release protocol e.g., [5]. However, the GA model acknowledges that remote data is
slower to access than local data and allows data locality to be specified by the programmer
and hence managed. GA is related to the global address space languages such as UPC [6],
Titanium[7], and, to a lesser extent, Co-Array Fortran1 [8]. In addition, by providing a set of
data-parallel operations, GA is also related to data-parallel languages such as HPF [9], ZPL
[10], and Data Parallel C [11]. However, the Global Array programming model is
implemented as a library that works with most languages used for technical computing and
does not rely on compiler technology for achieving parallel efficiency. It also supports a
combination of task- and data-parallelism and is available as an extension of the message-
passing (MPI) model. The GA model exposes to the programmer the hierarchical memory of
modern high-performance computer systems [12], and by recognizing the communication
overhead for remote data transfer, it promotes data reuse and locality of reference. Virtually
all the scalable architectures possess non-uniform memory access characteristics that reflect
their multi-level memory hierarchies. These hierarchies typically comprise processor
registers, multiple levels of cache, local memory, and remote memory. Over time, both the
number of levels and the cost (in processor cycles) of accessing deeper levels has been
increasing. It is important for any scalable programming model to address memory hierarchy
since it is critical to the efficient execution of scalable applications.

Before the DoE-2000 ACTS program was established [13, 14], the original GA package [2-4]
offered basic one-sided communication operations, along with a limited set of collective
operations on arrays in the style of BLAS [15]. Only two-dimensional arrays and two data
types were supported. The underlying communication mechanisms were implemented on top
of vendor specific interfaces. In the course of ten years, the package has evolved substantially
and the underlying code has been completely rewritten. This included separation of the GA

1 CAF does not provide explicit mechanisms for combining distributed data into a single shared object. It
supports one-sided access to so called “co-arrays”, arrays defined on every processor in the SPMD program.

 - 3 -

internal one-sided communication engine from the high-level data structure. A new portable,
general, and GA-independent communication library called ARMCI was created [16]. New
capabilities were later added to GA without the need to modify the ARMCI interfaces. The
GA toolkit evolved in multiple directions:

• Adding support for a wide range of data types and virtually arbitrary array ranks (note
that the Fortran limit for array rank is seven).

• Adding advanced or specialized capabilities that address the needs of some new
application areas, e.g., ghost cells or operations for sparse data structures.

• Expansion and generalization of the existing basic functionality. For example, mutex
and lock operations were added to better support the development of shared memory
style application codes. They have proven useful for applications that perform
complex transformations of shared data in task parallel algorithms, such as
compressed data storage in the multireference configuration interaction calculation in
the COLUMBUS package [17].

• Increased language interoperability and interfaces. In addition to the original Fortran
interface, C, Python, and a C++ class library were developed. These efforts were
further extended by developing a Common Component Architecture (CCA)
component version of GA.

• Developing additional interfaces to third party libraries that expand the capabilities of
GA, especially in the parallel linear algebra area. Examples are ScaLAPACK [18] and
SUMMA [19]. More recently, interfaces to the TAO optimization toolkit have also
been developed [20].

• Developed support for multi-level parallelism based on processor groups in the
context of a shared memory programming model, as implemented in GA[21, 22].

 - 4 -

These advances generalized the capabilities of the GA toolkit and expanded its appeal to a
broader set of applications. At the same time the programming model, with its emphasis on a
shared memory view of the data structures in the context of distributed memory systems with
a hierarchical memory, is as relevant today as it was in 1993 when the project started. This
paper describes the characteristics of the Global Arrays programming model, capabilities of
the toolkit, and discusses its evolution. In addition, performance and application experience
are presented.

2. The Global Arrays Model
The classic message-passing paradigm of parallel programming not only transfers data but
also synchronizes the sender and receiver. Asynchronous (nonblocking) send/receive
operations can be used to diffuse the synchronization point, but cooperation between sender
and receiver is still required. The synchronization effect is beneficial in certain classes of
algorithms, such as parallel linear algebra, where data transfer usually indicates completion of
some computational phase; in these algorithms, the synchronizing messages can often carry
both the results and a required dependency. For other algorithms, this synchronization can be
unnecessary and undesirable, and a source of performance degradation and programming
complexity. The MPI-2 [23] one-sided communication relaxes the synchronization
requirements between sender and receiver while imposing new constraints on progress and
remote data access rules that make the programming model more complicated than with other
one-sided interfaces [24, 25]. Despite programming difficulties, the message-passing memory
paradigm maps well to the distributed-memory architectures deployed in scalable MPP
systems. Because the programmer must explicitly control data distribution and is required to
address data-locality issues, message-passing applications tend to execute efficiently on such

Figure 1: Dual view of GA data structures (left). Any part of GA data can be accessed independently by
any process at any time (right).

Physically distributed data

Single, shared data structure

 - 5 -

systems. However, on systems with multiple levels of remote memory, for example networks
of SMP workstations or computational grids, the message-passing model’s classification of
main memory as local or remote can be inadequate. A hybrid model that extends MPI with
OpenMP attempts to address this problem but is very hard to use and often offers little or no
advantages over the MPI-only approach [26, 27].

In the shared-memory programming model, data is located either in “private” memory
(accessible only by a specific process) or in “global” memory (accessible to all processes). In
shared-memory systems, global memory is accessed in the same manner as local memory.
Regardless of the implementation, the shared-memory paradigm eliminates the
synchronization that is required when message-passing is used to access shared data. A
disadvantage of many shared-memory models is that they do not expose the NUMA memory
hierarchy of the underlying distributed-memory hardware [12]. Instead, they present a flat
view of memory, making it hard for programmers to understand how data access patterns
affect the application performance or how to exploit data locality. Hence, while the
programming effort involved in application development tends to be much lower than in the
message-passing approach, the performance is usually less competitive.

The shared memory model based on Global Arrays combines the advantages of a distributed
memory model with the ease of use of shared memory. It is able to exploit SMP locality and
deliver peak performance within the SMP by placing user's data in shared memory and
allowing direct access rather than through a message-passing protocol. This is achieved by
function calls that provide information on which portion of the distributed data is held locally
and the use of explicit calls to functions that transfer data between a shared address space and
local storage. The combination of these functions allows users to make use of the fact that
remote data is slower to access than local data and to optimize data reuse and minimize
communication in their algorithms. Another advantage is that GA, by optimizing and moving
only the data requested by the user, avoids issues such as false sharing, data coherence
overheads, and redundant data transfers present in some software-based distributed shared
memory (DSM) solutions [28-30]. These issues also affect performance of OpenMP programs
compiled to use DSM [31].

GA allows the programmer to control data distribution and makes the locality information
readily available to be exploited for performance optimization. For example, global arrays can
be created by 1) allowing the library to determine the array distribution, 2) specifying the
decomposition for only one array dimension and allowing the library to determine the others,
3) specifying the distribution block size for all dimensions, or 4) specifying an irregular
distribution as a Cartesian product of irregular distributions for each axis. The distribution and
locality information is always available through interfaces to query 1) which data portion is
held by a given process, 2) which process owns a particular array element, and 3) a list of
processes and the blocks of data owned by each process corresponding to a given section of
an array.

The primary mechanisms provided by GA for accessing data are block copy operations that
transfer data between layers of memory hierarchy, namely global memory (distributed array)
and local memory. Further extending the benefits of using blocked data accesses, copying
remote locations into contiguous local memory can improve uniprocessor cache performance
by reducing both conflict and capacity misses [32]. In addition, each process is able to access
directly data held in a section of a Global Array that is locally assigned to that process and on

 - 6 -

SMP clusters sections owned by other processes on the same node. Atomic operations are
provided that can be used to implement synchronization and assure correctness of an
accumulate operation (floating-point sum reduction that combines local and remote data)
executed concurrently by multiple processes and targeting overlapping array sections.

GA is extensible as well. New operations can be defined exploiting the low level interfaces
dealing with distribution, locality and providing direct memory access
(nga_distribution, nga_locate_region, nga_access, nga_release,
nga_release_update) [33]. These, for example, were used to provide additional linear
algebra capabilities by interfacing with third party libraries e.g., ScaLAPACK [18].

2.1 Memory consistency model

In shared memory programming, one of the issues central to performance and scalability is
memory consistency. Although the sequential consistency model [34] is straightforward to
use, weaker consistency models [35] can offer higher performance on modern architectures
and they have been implemented on actual hardware. The GA approach is to use a weaker
than sequential consistency model that is still relatively straightforward to understand by an
application programmer. The main characteristics of the GA approach include:

• GA distinguishes two types of completion of the store operations (i.e., put, scatter)
targeting global shared memory: local and remote. The blocking store operation
returns after the operation is completed locally, i.e., the user buffer containing the
source of the data can be reused. The operation completes remotely after either a
memory fence operation or a barrier synchronization is called. The fence operation is
required in critical sections of the user code, if the globally visible data is modified.

• The blocking operations (load/stores) are ordered only if they target overlapping
sections of global arrays. Operations that do not overlap or access different arrays can
complete in arbitrary order.

• The nonblocking load/store operations complete in arbitrary order. The programmer
uses wait/test operations to order completion of these operations, if desired.

3. The Global Array Toolkit
There are three classes of operations in the Global Array toolkit: core operations, task parallel
operations, and data parallel operations. These operations have multiple language bindings,
but provide the same functionality independent of the language. The GA package has grown
considerably in the course of ten years. The current library contains approximately 200
operations that provide a rich set of functionality related to data management and
computations involving distributed arrays.

3.1 Functionality

The basic components of the Global Arrays toolkit are function calls to create global arrays,
copy data to, from, and between global arrays, and identify and access the portions of the
global array data that are held locally. There are also functions to destroy arrays and free up
the memory originally allocated to them. The basic function call for creating new global
arrays is nga_create. The arguments to this function include the dimension of the array,
the number of indices along each of the coordinate axes, and the type of data (integer, float,

 - 7 -

double, etc.) that each array element represents. The function returns an integer handle that
can be used to reference the array in all subsequent calculations. The allocation of data can be
left completely to the toolkit, but if it is desirable to control the distribution of data for load
balancing or other reasons, additional versions of the nga_create function are available
that allow the user to specify in detail how data is distributed between processors. Even the
basic nga_create call contains an array that can be used to specify the minimum
dimensions of a block of data on each processor.

One of the most important features of the Global Arrays toolkit is the ability to easily move
blocks of data between global arrays and local buffers. The data in the global array can be
referred to using a global indexing scheme and data can be moved in a single function call,
even if it represents data distributed over several processors. The nga_get function can be
used to move a block of distributed data from a global array to a local buffer and has a
relatively simple argument list. The arguments consist of the array handle for the array that
data is being taken from, two integer arrays representing the lower and upper indices that
bound the block of distributed data that is going to be moved, a pointer to the local buffer or a
location in the local buffer that is to receive the data, and an array of strides for the local data.
The nga_put call is similar and can be used to move data in the opposite direction. For a
distributed data paradigm with message-passing, this kind of operation is much more
complicated. The block of distributed data that is being accessed must be decomposed into
separate blocks, each residing on different processors, and separate message-passing events
must be set up between the processor containing the buffer and the processors containing the
distributed data. A conventional message-passing interface will also require concerted actions
on each pair of processors that are communicating, which contributes substantially to program
complexity.

The one-sided communications used by Global Arrays eliminate the need for the programmer
to account for responses by remote processors. Only the processor issuing the data request is
involved, which considerably reduces algorithmic complexity compared to the programming
effort required to move data around in a two-sided communication model. This is especially
true for applications with dynamic or irregular communication patterns. Even for other
programming models that support onesided communications, such as MPI-2, the higher level
abstractions supported by GA can reduce programming complexity. To copy data from a local
buffer to a distributed array requires only a single call to nga_put. Based on the data
distribution, the GA library handles the decomposition of the put into separate point-to-point
data transfers to each of the different processors to which the data must be copied and
implements each transfer. The corresponding MPI_Put, on the other hand, only supports
point-to-point transfers, so all the decomposition and implementation of the separate transfers
must be managed by the programmer.

To allow the user to exploit data locality, the toolkit provides functions identifying the data
from the global array that is held locally on a given processor. Two functions are used to
identify local data. The first is the nga_distribution function, which takes a processor
ID and an array handle as its arguments and returns a set of lower and upper indices in the
global address space representing the local data block. The second is the nga_access
function, which returns an array index and an array of strides to the locally held data. In
Fortran, this can be converted to an array by passing it through a subroutine call. The C
interface provides a function call that directly returns a pointer to the local data.

 - 8 -

In addition to the communication operations that support task-parallelism, the GA toolkit
includes a set of interfaces that operate on either entire arrays or sections of arrays in the data
parallel style. These are collective data-parallel operations that are called by all processes in
the parallel job. For example, movement of data between different arrays can be accomplished
using a single function call. The nga_copy_patch function can be used to move a patch,
identified by a set of lower and upper indices in the global index space, from one global array
to a patch located within another global array. The only constraints on the two patches are that
they contain equal numbers of elements. In particular, the array distributions do not have to be
identical and the implementation can perform as needed the necessary data reorganization (so
called “MxN” problem [36]). In addition, this interface supports an optional transpose
operation for the transferred data. If the copy is from one patch to another on the same global
array, there is an additional constraint that the patches do not overlap.

3.2 Example

A simple code fragment illustrating how these routines can be used is shown in Figure 2. A 1-
dimensional array is created and initialized and then inverted so that the entries are running in
the opposite order. The locally held piece of the arrays is copied to a local buffer, the local
data is inverted, and then it is copied back to the inverted location in the global array. The
chunk array specifies minimum values for the size of each locally held block and in this
example guarantees that each local block is a 100 integer array. Note that global indices are
used throughout and that it is unnecessary to do any transformations to find the local indices
of the data on other processors.

 - 9 -

A more complicated example is a distributed matrix multiply of two global arrays, which is
illustrated schematically in Figure 3. (This is not an optimal algorithm and is used primarily to

local buffers on the
processor

•

•

=

=

nga_getnga_put

dgemm

Figure 3: Schematic representation of distributed matrix multiply, C = A·B.

integer ndim, nelem
parameter (ndim=1, nelem=100)
integer dims, chunk, nprocs, me, g_a, g_b
integer a(nelem), b(nelem)
integer i, lo, hi, lo2, hi2, ld

me = ga_nodeid() ! rank of the process
nprocs = ga_nnodes() ! total # of processes

dims = nprocs*nelem
chunk(1) = nelem
ld = nelem

call nga_create(MT_INT, ndim, dims,
 ‘array A’, chunk, g_a)
call nga_duplicate(g_a, g_b, ‘array B’)
! INITIALIZE DATA IN GA (NOT SHOWN)
call nga_distribution(g_a, me, lo, hi)

call nga_get(g_a, lo, hi, a, ld)
! INVERT LOCAL DATA
do i = 1, nelem
 b(i) = a(nelem+1-i)
end do
! INVERT DATA GLOBALLY
lo2 = dims + 1 – hi
hi2 = dims + 1 – lo
call nga_put(g_b, lo2, hi2, b, ld)

#define NDIM 1
#define NELEM 100
int dims, chunk, nprocs, me, g_a;
int a[NELEM],b[NELEM];
int i, lo, hi, lo2, hi2, ld;
GA::GlobalArray *g_a, *g_b;

me = GA::SERVICES.nodeid();
nprocs = GA::SERVICES.nodes();

dims = nprocs*NELEM;
chunk = ld = NELEM;

// create a global array
g_a = GA::SERVICES.createGA(C_INT, NDIM,

 dims, “array A”, chunk);

g_b = GA::SERVICES.createGA(g_a, “array B”);
// INITIALIZE DATA IN GA (NOT SHOWN)
g_a->distribution(me, lo, hi);

g_a->get(lo, hi, a, ld);
// INVERT DATA LOCALLY
for (i=0; i<nelem; i++) b[i] = a[nelem-1 – i];
// INVERT DATA GLOBALLY
lo2 = dims – 1 – hi;
hi2 = dims – 1 – lo;
g_b->put(lo2,hi2,b,ld);

Figure 2: Example Fortran (left) and C++ (right) code for transposing elements of an array

 - 10 -

illustrate how the toolkit can be used.) The matrix multiply requires three global arrays, A, B,
and the product array, C.

The nga_distribution function is used to identify the indices of the locally held block
from the product array C; this then determines what portions of the arrays A and B need to be
moved to each processor to perform the calculation. The two data strips required to produce
the target block are then obtained using a pair of nga_get calls. These calls will, in general,
get data from multiple processors. Once the data from the A and B arrays has been copied to
local buffers, the multiplication can be performed locally using an optimized scalar matrix
multiplication algorithm, such as the LAPACK dgemm subroutine. The product patch is then
copied back to the C array using an nga_put call.

The Global Array toolkit also contains a broad spectrum of elementary functions that are
useful in initializing data or performing calculations. These include operations that zero all the
data in a global array, uniformly scale the data by some value, and support a variety of
(BLAS-like) basic linear algebra operations including addition of arrays, matrix
multiplication, and dot products. The global array matrix multiplication has been
reimplemented over the years, without changing the user interface. These different
implementations ranged from a wrapper to the SUMMA [19] algorithm to the more recently
introduced high-performance SRUMMA algorithm [37, 38] that relies on a collection of
protocols (shared memory, remote memory access, nonblocking communication) and
techniques to optimize performance depending on the machine architecture and matrix
distribution.

3.3 Interoperability with other packages

The GA model is compatible with and extends the distributed memory model of MPI. The
GA library relies on the execution/run-time environment provided by MPI. In particular, the
job startup and interaction with the resource manager is left to MPI. Thanks to the
compatibility and interoperability with MPI, GA 1) can exploit the existing rich set of
software based on MPI to implement some of the capabilities such as linear algebra and 2)
provides the programmer with the ability to mix and match different communication styles
and capabilities provided by GA and MPI. For example, the molecular dynamics module of
NWChem uses an MPI-based FFT library combined with a GA-based implementation of
different molecular dynamics algorithms and data management strategies.

The GA package by itself relies on the linear algebra functionality provided by ScaLAPACK.
For example, the ga_lu_solve is interfaced with the appropriate ScaLAPACK
factorization pdgetrf and the forward/backward substitution interface pdgetrs. Because
the global arrays already contain all the information about array dimensionality and layout,
the GA interface is much simpler (see Figure 4).

 - 11 -

Other important capabilities integrated with GA and available to the programmer include
numerical optimization. These capabilities are supported thanks to the Toolkit for Advanced
Optimization (TAO) [20, 39]. TAO offers these capabilities while relying on the GA
distributed data management infrastructure and linear algebra operations.

Examples of other toolkits and packages that are interoperable and have been used with GA
include the Petsc PDE solver toolkit [40], CUMULVS toolkit for visualization and
computational steering [41], and PEIGS parallel eigensolver library [42].

3.4 Language Interfaces

One of the strengths of the GA toolkit is its ambivalence toward the language that the end user
application is developed in. Interfaces in C, C++, Fortran, and Python to GA have been
developed (Figure 5). Mixed language applications are supported as well. For example, a
global array created from a Fortran interface can be used within a C function, provided that
the corresponding data types exist in both languages. The view of the underlying data layout
of the array is adjusted, depending on the language bindings, to account for the preferred array

�������������	�

�
���
��������	�

�����
�����
���������

� �����	������	
���������
���������

�������������������
�����
���������	�����	����	�������	�
����	

����������������	��������
������ �!����	�����	��	���	��"�������#������$$

���
��������

�	����������

���
���
��
�	��������
��

�������	�

��	���	���

��

������#�
���������

%�����	�&& � �'' (���
 ���#�	

)�"�
�
������	�

��������	��

�	�������	�������

%*+

Figure 5: Diagram of Global Arrays showing the overall structure of the toolkit and emphasizing
different language bindings

call ga_lu_solve(g_a, g_b)

 instead of

call pdgetrf(n,m, locA, p, q, dA, ind, info)

call pdgetrs(trans, n, mb, locA, p, q, dA, dB, info)

Figure 4: ga_lu_solve operation is much easier to use than the ScaLAPACK interfaces that are invoked
beneath this GA operation.

 - 12 -

layout native to the language (column-based in Fortran and row-based in C/C++/Python). A
50x100 array of double precision data created from the Fortran interface is available as a
100x50 array of doubles through the C bindings.

Recently, Babel [43] interfaces to GA have been developed. Babel supports additional
translation of the GA interfaces to Fortran 90 and Java.

4. Efficiency and Portability
GA uses ARMCI (Aggregate Remote Memory Copy Interface) [16] as the primary
communication layer. Collective operations, if needed by the user program, can be handled by
MPI. Neither GA nor ARMCI can work without a message-passing library that provides the
essential services and elements of the execution environment (job control, process creation,
interaction with the resource manager).The Single Program Multiple Data (SPMD) model of
computations is inherited from MPI, along with the overall execution environment and
services provided by the operating system to the MPI programs. ARMCI is currently a
component of the run-time system in the Center for Programming Models for Scalable
Parallel Computing project [44]. In addition to being the underlying communication interface
for Global Arrays, it has been used to implement communication libraries and compilers [16,
45-47]. ARMCI offers an extensive set of functionality in the area of RMA communication:
1) data transfer operations; 2) atomic operations; 3) memory management and
synchronization operations; and 4) locks. Communication in most of the non-collective GA
operations is implemented as one or more ARMCI communication operations. ARMCI was
designed to be a general, portable, and efficient one-sided communication interface that is
able to achieve high performance [48-51]. It also avoided the complexity of the progress rules
and increased synchronization in the MPI-2 one-sided model (introduced in 1997), that
contributed to its delayed implementations and still rather limited adoption (as of 2004).

During the ACTS project, development of the ARMCI library represented one of the most
substantial tasks associated with advancements of GA. It implements most of the low level
communication primitives required by GA. High performance implementations of ARMCI
were developed under the ACTS project within a year for the predominant parallel systems
used in the US in 1999 [16, 51] and it has been expanded and supported since then on most
other platforms, including massively parallel scalar and vector supercomputers [52] as well as
clusters [48, 50].

GA’s communication interfaces combine the ARMCI interfaces with a global array index
translation layer, see Figure 6. Performance of GA is therefore proportionate to and in-line
with ARMCI performance. GA achieves most of its portability by relying on ARMCI. This
reduces the effort associated with porting GA to a new platform to porting ARMCI. GA relies
on the global memory management provided by ARMCI, which requires that remote memory
be allocated via the memory allocator routine, ARMCI_Malloc (similar to MPI_Win_malloc
in MPI-2). On shared memory systems, including SMPs, this approach makes it possible to
allocate shared memory for the user data and consecutively map remote memory operations to
direct memory references, thus achieving sub-microsecond latency and a full memory
bandwidth [51]. Similarly, on clusters with networks based on physical memory RDMA,
registration of allocated memory maks it suitable for zero-copy communication. To support
efficient communication in the context of multi-dimensional arrays, GA requires and utilizes
the non-contiguous vector and multi-strided primitives provided by ARMCI [16].

 - 13 -

Many GA operations achieve good performance by utilizing the low-overhead high-overlap
non-blocking operations in ARMCI to overlap computation with communication. Even
blocking one-sided GA operations internally use non-blocking ARMCI operations to exploit
available concurrency in the network communication. Figure 6 shows how a GA_Get call is
implemented and eventually translated to ARMCI Get call(s). The left side represents a flow
chart and the right side shows the corresponding example for the flowchart. A GA Get call
first requires determination of data locality: the physical location of the data in the
distributed/partitioned address space needs to be determined. Then indices corresponding to
where the data is located (on that process) need to be found. When this information is
available, multiple ARMCI non-blocking Get calls are made, one for each remote destination
that holds a part of the data. After all the calls are issued, they are waited upon until
completed. By issuing all the calls first and then waiting on their completion, a significant
amount of overlap can be achieved when there is more than one remote destination. When the
wait is completed, the data is in the buffer and the control is returned to the user program.

 - 14 -

On cluster interconnects, ARMCI achieves bandwidth close to the underlying network
protocols [50], see Figure 7. The same applies to latency if the native platform protocol
supports the equivalent remote memory operation (e.g., elan_get on Quadrics). For
platforms that do not support remote get (VIA) the latency sometimes includes the cost of
interrupt processing that is used in ARMCI to implement the get operation. Although, relying
on interrupt may increase the latency over the polling-based approaches, progress in
communication is guaranteed regardless of whether or not the remote process is computing or
communicating. The performance of inter-node operations in GA closely follows the
performance of ARMCI. Thanks to its very low overhead implementation, ARMCI is able to
achieve performance close to that of native communication protocols, see Figure 7. These

Figure 6: Left: GA_Get flow chart. Right: An example: Process P2 issues GA_Get to get a chunk of data,
which is distributed (partially) among P0, P1, P3 and P4 (owners of the chunk).

Waits for
completion of all

data transfers

GA_Get

Determine ownership
and data locality

P2

P2 calls GA Get to get
part of the global array
into its local buffer

P0 P1

P3 P4

P0
P2

P1

P3 P4

P0

 P2

P1

P3 P4

Issue multiple
non-blocking

ARMCI_NbGet’s,
one for data on each
remote destination

P2 has the data, GA Get
is complete

P2

 - 15 -

benefits are carried over to GA, making its performance very close to native communication
protocols on many platforms. This can be seen in Figure 7, which compares GA Get
performance with ARMCI Get performance and raw native network protocol performance on
the Mellanox Infiniband and Elan4 (both are popular high speed current generation cluster
interconnects). Figure 8 shows the performance of GA Get and Put on Linux clusters. Figure
9 shows the performance of GA Get/Put strided calls for square sections of a two-dimensional
array, which involve non-contiguous data transfers. Latencies in GA and ARMCI operations
are compared in Table 1. The small difference between performances of these two interfaces
is due to the extra cost of the global array index translation, see Figure 6. The differences are
considerable in the shared memory version because simple load/store operation is faster than
the index translation.

Table 1: Latency (in microseconds) in GA and ARMCI operations

Operation/platform Linux
1.5GHz IA64
Elan-4

Linux
1GHz IA64
4X Infiniband

Linux
2.4GHz IA32
Myrinet-2000/C card

Linux
2.4GHz IA32
shared memory

ARMCI Get 4.54 16 17 0.162

GA Get 6.59 22 18 1.46

ARMCI Put 2.45 12 12 0.17

GA Put 4.71 16 13 1.4

Figure 7: Comparison of GA Get with ARMCI Get and native protocols performance Left: InfiniBand
(IA64), Right: Quadrics Elan4 (IA64)

0

100

200

300

400

500

600

700

1 10 100 1000 10000 100000 1000000

Bytes

M
B

p
s

RAW VAPI RDMA Get

ARMCI Get

GA Get

0

100

200

300

400

500

600

700

800

900

1 10 100 1000 10000 100000 1000000

Bytes

M
B

p
s

Raw Elan4 Get

ARMCIGet

GA Get

 - 16 -

5. Advanced Features
The GA model was defined and implemented ten years ago [2], and then ported to the leading
parallel machines of that time. In addition to ports and optimizations that have been
introduced since then, the GA toolkit has evolved dramatically in terms of its capabilities,
generality, and interoperability. In this section, advanced capabilities of the GA toolkit are
discussed.

5.1 Ghost Cells and Periodic Boundary Conditions
Many applications simulating physical phenomena defined on regular grids benefit from
explicit support for ghost cells. These capabilities have been added recently to Global Arrays,

0

100

200

300

400

500

600

700

800

900

1 10 100 1000 10000 100000 1000000 1000000
0

Bytes

M
B

p
s

1D Myrinet (IA32)

1D GigE (IA64)

1D Inf iniband (IA64)

1D Elan4 (IA64)

1D Elan3(IA64)

0

100

200

300

400

500

600

700

800

900

1 10 100 1000 10000 100000 1000000 1000000
0

Bytes

M
B

p
s

1D Myrinet (IA32)

1D GigE (IA64)

1D Inf iniband (IA64)

1D Elan4 (IA64)

1D Elan3(IA64)

Figure 8: Performance of basic GA 1D operations on Linux clusters: get (left), put (right)

0

100

200

300

400

500

600

700

1 10 100 1000 10000 100000 1000000 1E+07

Bytes

M
B

p
s

2D Myrinet (IA32)

2D GigE (IA64)

2D Inf iniband (IA64)

2D Elan4 (IA64)

2D Elan3(IA64)

0

100

200

300

400

500

600

700

1 10 100 1000 10000 100000 1000000 1000000
0

Bytes

M
B

p
s

2D Myrinet (IA32)

2D GigE (IA64)

2D Inf iniband (IA64)

2D Elan4 (IA64)

2D Elan3(IA64)

Figure 9: Performance of basic GA 2D operations: get (left), put (right)

 - 17 -

along with the corresponding update and shift operations that operate on ghost cell regions
[53]. Examples of other packages that include support for ghost cells include POOMA [54],
Kelp [55], Overture [56], and Zoltan [57]. The update operation fills in the ghost cells with
the visible data residing on neighboring processors. Once the update operation is complete,
the local data on each processor contains the locally held “visible” data plus data from the
neighboring elements of the global array, which has been used to fill in the ghost cells. Thus,
the local data on each processor looks like a chunk of the global array that is slightly bigger
than the chunk of locally held visible data, see Figure 10. The update operation to fill in the
ghosts cells can be treated as a collective operation, enabling a multitude of optimization
techniques. It was found that depending on the platform, different communication algorithms
(message-passing, one-sided communication, shared memory) work the best. The
implementation of the update makes use of the optimal algorithm for each platform. GA also
allows ghost cell widths to be set to arbitrary values in each dimension, thereby allowing
programmers to improve performance by combining multiple fields into one global array and
using multiple time steps between ghost cell updates. The GA update operation offers several
embedded synchronization semantics: no synchronization whatsoever, synchronization at the
beginning of the operation, at the end or both. They are selected by the user by calling an
optional function that cancels any synchronization points in the update operation, see Section
5.5. This can be used to eliminate unnecessary synchronizations in codes where other parts of
the algorithm guarantee consistency of the data.

Along with ghost cells, additional operations are provided that can be used to implement
periodic boundary conditions on periodic or partially periodic grids. All the onesided
operations (put/get/accumulate) in GA are available in versions that support periodic
boundary conditions. The syntax for using these commands is that the user requests a block of
data using the usual global index space. If one of the dimensions of the requested block
exceeds the dimension of the global array, that portion of the request is automatically wrapped
around the array edge and the data from the other side of the array is used to complete the
request. This simplifies coding of applications using periodic boundary conditions, since the
data can be copied into a local buffer that effectively "pads" the original array to include the
wrapped data due to periodicity. This eliminates the need to explicitly identify data at the
edge of the array and makes coding much simpler.

����������	�������
�
���	�������
����������������

Figure 10: An ordinary global array distributed on 9 processors (left) and the corresponding global array with
ghost cells (right).

 - 18 -

5.2 Sparse Data Management
Unstructured meshes are typically stored in a compressed sparse matrix form where the arrays
that represent the data structures are one-dimensional. Computations on such unstructured
meshes often lead to irregular data access and communication patterns. They also map to a
distributed, shared memory, parallel programming model. Developing high-level abstractions
and data structures that are general and applicable to a range of problems and applications is a
challenging task. Therefore, our plan was to identify a minimal set of lower level interfaces
that facilitate operations on sparse data format first and then try to define higher level data
structures and APIs after gaining some experience in using these interfaces.

A set of functions was developed to operate on distributed, compressed, sparse matrix data
structures built on top of one-dimensional global arrays [58, 59]. These functions have been
patterned after similar functions in CMSSL, developed for Thinking Machines CM-2 and
CM-5 massively parallel computers in the late 80’s and early 90’s. Some of them were also
included in the set of HPF intrinsic functions [9]. The types of functions that have been
designed, implemented and tested include: 1) enumerate; 2) pack/unpack; 3) scatter_with_OP,
where OP can be plus, max, min; 4) segmented_scan_with_OP, where OP can be plus, max,
min, copy; 5) binning (i.e., N-to-M mapping); and 6) a 2-key binning/sorting function. All the
functions operate on one-dimensional global arrays and can form a foundation for building
unstructured mesh data structures. Numerical operators defined on unstructured meshes
typically have sparse matrix representations that are stored as one-dimensional data structures.
The Global Array functions for manipulating one-dimensional arrays have been adopted in
mesh generation (NWGrid [60]) and computational biophysics (NWPhys [61]) codes.

The use of some of these functions can be seen by considering a sparse matrix multiplying a
sparse vector. Sparse data structures are generally stored by mapping them onto dense, one-
dimensional arrays. A portion of a sparse matrix stored in column major form is shown in
Figure 11 along with its mapping to a corresponding dense vector. Only non-zero values are
stored, along with enough information about indices to reconstruct the original matrix.

Generally, only compressed arrays are created, construction of the full sparse matrix is
avoided at all steps in the algorithm. The steps of a sparse matrix-vector multiply are
illustrated in Figure 12. The original sparse matrix and sparse vector are shown in Figure
12(a). The sparse vector is then mapped onto a matrix with the same sparsity pattern as the
original sparse matrix (Figure 12(b)). This mapping is partially accomplished using the
enumerate command. Note that the remapped sparse vector may have many zero entries

R1 R2 R3 R4 R5

Figure 11. A portion of a sparse matrix in column major form is remapped to a dense, one-dimensional array.
Rows 1-5 are converted to short segments in the one-dimensional array.

R1

R2

R3

R4

R5

 - 19 -

(shown as hatched elements in the figure). Both the original matrix and the sparse matrix
representation of the vector are written as dense one-dimensional arrays (Figure 12(c)). The
multiplication can be completed by multiplying together each component of the two dense
vectors and then performing a segmented_scan_with_OP, where OP is addition, to get the
final product vector. The segmented_scan_with_OP adds together all elements within a
segment and can be used to add together all elements in the product matrix corresponding to
an individual row (Figure 12(d)).

The pack/unpack functions can be used to work on portions of the sparse data structure by
masking portions of the data structure and copying it into another array. These can be used to
implement the equivalent of the HPF where statement. The binning routines can be used to
partition and manipulate structures. For example, the N-to-M binning function can be used to
spatially partition an unstructured mesh using a regular mesh superimposed on top of it.

5.3 Nonblocking Communication
Nonblocking communication is a mechanism for latency hiding where a programmer attempts
to overlap communication with computation. In some applications, by pipelining
communication and computation, the overhead of transferring data from remote processors
can be overlapped with calculations. The nonblocking operations (get/put/accumulate) are
derived from the blocking interface by adding a handle argument that identifies an instance of
the non-blocking request. Nonblocking operations initiate a communication call and then
return control to the application. A return from a nonblocking operation call indicates a mere
initiation of the data transfer process and the operation can be completed locally by making a
call to the wait (ga_wait) routine. Waiting on a nonblocking put or an accumulate operation
assures that data was injected into the network and the user buffer can be now be reused.
Completing a get operation assures data has arrived into the user memory and is ready for use.
The wait operation ensures only local completion. Unlike their blocking counterparts, the

Figure 12. (a) original sparse matrix-vector multiply (b) sparse vector has been expanded to a sparse matrix
(transpose of original sparse vector is included to show how mapping is accomplished) (c) Compressed versions

of sparse matrix and vector (d) product vector after element-wise multiplication and segmented scan with
addition.

(d)

(b) (a)

(c)

 - 20 -

nonblocking operations are not ordered with respect to the destination. Performance is one
reason, another is that by ensuring ordering we incur additional and possibly unnecessary
overhead on applications that do not require their operations to be ordered. For cases where
ordering is necessary, it can be done by calling a fence operation. The fence operation is
provided to the user to confirm remote completion if needed.

It should be noted that most users of nonblocking communication implicitly assume that
progress in communication can be made concurrently in a purely computational phase of the
program execution. However, this assumption is often not satisfied in practice -- the
availability of a nonblocking API does not guarantee that the underlying system hardware and
native protocols support overlapping communication with computation [62].

A simple benchmark was performed in the context of GA and MPI to demonstrate the overlap
of communication with computation. We measure the overlap as follows: we assume the time
to issue a non-blocking call is a constant, which can be represented by ti. The time to wait for
a non-blocking call (or the time taken to issue a wait for the non-blocking call) is td + tw,
where td represents time spent waiting for the data to arrive and tw represents the time taken to
complete the wait call when the data has already arrived. ti + (td + tw) is the total time taken
when the non-blocking call is issued and waited on immediately. This time is typically the
same as the time taken to issue a blocking version of the same call. In the non-blocking call, td
represents the time that can be effectively be utilized in doing computation. A very good
measure for the effectiveness of a non-blocking call is to see what percentage of the total time
td represents (td * 100) / (ti + (td + tw). A higher percentage indicates more overlap is possible.

We performed an experiment on two nodes with one node issuing a nonblocking get for data
located on the other, and then waiting for the transfer to be completed in the wait call. We
also implemented an MPI version of the above benchmark; our motivation was to compare
the overlap in GA with the overlap in the MPI nonblocking send/receive operations. In MPI,
if one process (A) needs a portion of data from another one (B), it sends a request and waits
on a nonblocking receive for the response. Process A’s calling sequence is as follows: 1)
MPI_Isend, 2) MPI_Irecv, 3) MPI_wait (waits for MPI_Isend to complete), 4) MPI_Wait
(waits for MPI_Irecv to complete). Process B’s calling sequence is: 1) MPI_Recv and 2)
MPI_Send. In process A, computation is gradually inserted between the initiating
nonblocking Irecv call (i.e after step 3) and the corresponding wait completion call. We
measured the computation overlap for both the GA and MPI versions of the benchmark on a
Linux cluster with dual 2.4GHz Pentium-4 nodes and Myrinet-2000 interconnect. The results
are plotted in Figure 13. The percentage overlap (represented by (td * 100) / (ti + (td + tw))) is
effectively a measure of the amount of time that a nonblocking (data transfer) call can be
overlapped with useful computation. We observe that GA offers a higher degree of overlap
than MPI. For larger messages (>16K) where the MPI implementation switches to the
Rendezvous protocol (which involves synchronization between sender and receiver), we were
able to overlap almost the entire time (>99%) in GA, where as in MPI, it is less than 10%.

The experimental results illustrating limited opportunities for overlapping communication and
computation are consistent with findings reported for multiple MPI implementations in [62-
64]. Since the GA represents a higher–level abstraction model and, in terms of data transfer,
simpler than MPI (e.g., it does not involve message tag matching or dealing with early arrival
of messages), more opportunities for effective implementation of overlapping communication
with computation are available.

 - 21 -

5.4 Mirroring: Shared Memory Cache for Distributed Data
Caching distributed memory data in shared memory is another mechanism for latency hiding
supported in the GA toolkit [65]. It has been primarily developed for clusters with SMP
nodes; however earlier it was used for grid computing [66, 67]. Compared to most custom
supercomputer designs, where the CPU power is balanced with a high speed memory
subsystem and high-performance network, commodity clusters are often built based on very
fast processors using relatively low-performance networks. Mirrored arrays are designed to
address these configurations by replicated data across nodes but distributing it and storing in
shared memory within the SMP nodes (Figure 14). This technique has several potential
advantages on clusters of SMP nodes, particularly if the internode communication is slow
relative to computation. Work can be done on each “mirrored” copy of the array
independently of copies on other nodes. Within the node the work is distributed, which saves
some memory (on systems with many processors per node, this savings can be quite
substantial relative to strict replication of data). Intranode communication is via shared
memory and is therefore very fast. One-sided operations such as put, get, and accumulate are
only between the local buffer and the mirrored copy on the same node as the processor
making the request. Most operations that are supported for regular global arrays are also
supported for mirrored arrays, so the amount of user code modification in transitioning from
fully distributed to mirrored schemes is minimal. Operations between two or more global
arrays are generally supported if both arrays are mirrored or both arrays are distributed.
Mirrored arrays can be used in situations where the array is being exclusively accessed for
either reading or writing. For the DFT application described below, data is read from one
mirrored array using the nga_get operation and accumulated to another mirrored array
using nga_acc. Mirrored arrays also limit the problem size to systems that can be contained
on a single node. In fact, mirrored arrays are essentially using memory to offset
communication, but because data is distributed within the node they are more efficient than
strict replicated data schemes.

At some point the different copies of the array on each node must be combined so that all
copies are the same. This is accomplished with the ga_merge_mirrored function. This

0

20

40

60

80

100

120

512 2048 8192 32768 131072 524288 1036800

Message Size (Bytes)

P
er

ce
nt

ag
e

O
ve

rl
ap

GA (NbGet)

GA (NbPut)

MPI (Isend/Irecv)

Figure 13: Percentage computation overlap for increasing message sizes for MPI and GA on Linux/Myrinet

 - 22 -

function adds together all copies of the mirrored array across all nodes. After merging, all
copies of the mirrored array are the same and equal to the sum of all individual copies of the
array. This function allows programmers to combine the work that is being done on separate
SMP nodes together to get a single answer that is easily available to all processors. In addition
to creating the new merge operation, the copy operations have been augmented so that they
work between a mirrored array and a regular distributed array. The copy operation does not
implicitly perform a merge if the mirrored array is copied into distributed array. The
availability of an easy conversion between mirrored and distributed arrays allows
programmers to convert some parts of their code to use mirrored arrays and leave other parts
of their code using distributed arrays. Code that is limited by communication can be converted
to use mirroring while the remaining code can be left using distributed arrays, thereby saving
memory.

5.5. Synchronization Control
GA includes a set of data-parallel interfaces that operate on global arrays, including BLAS-
like linear algebra operations. As a convenience to the programmer (especially novice users),
to simplify management of memory consistency, most data parallel operations include at the
beginning and at the end a global barrier operation. The role of the initial barrier is to assure
safe transition from the task parallel to the data parallel phase of computations. Specifically,
before the data in a global array is accessed in the data parallel operation, the barrier call
synchronizes the processors and completes any outstanding store operations that could modify
the data in the global array. Similarly, the final barrier assures that all processors committed
their changes to the global array before it can be accessed remotely. Although the barrier
operation is optimized for performance, and, where possible, uses hardware barriers, it is a
source of overhead, especially in fine-grain sections of the applications. The importance of
reducing barrier synchronization has been recognized and studied extensively in the context
of data-parallel computing [68-70]. In order to eliminate this overhead, the toolkit offers an

���������	���� �	����������� ��������������

Figure 14: Example of a 2-dimensional array fully distributed (a), SMP mirrored (b), and replicated (c)
on a two 4-way SMP cluster nodes

������� �������

Network

 - 23 -

optional ga_mask_sync operation that allows the programmer to eliminate either of the
two barriers before calling a data parallel operation. This operation updates the internal state
of the synchronization flags so that when the actual operation is called, one or both barriers
can be eliminated. The temporal scope of the mask operation is limited to the next data
parallel operation and when that is completed the status of the synchronization flags is reset.
The availability of this mechanism enables the programmer, after debugging and analyzing
dependencies in his/her code, to improve performance by eliminating redundant barriers.

5.6 Locks and Atomic Operations
Atomic operations such as fetch-and-add can be used to implement dynamic load balancing
(see Section 6.1) or mutual exclusion. In addition, GA through ARMCI offers explicit lock
operations that help the programmer to protect critical sections of the code. ARMCI lock
operations are optimized to deliver better performance than the user would otherwise be able
to implement based on fetch-and-add [48, 71].

Moreover, GA offers an atomic reduction operation, accumulate, that has built in
atomicity and thus does not require explicit locking. This operation is one of the key
functionalities required in quantum chemistry applications, and makes the use of locks in this
application area rare. This operation and its use in chemistry was the primary motivation for
including mpi_accumulate in the MPI-2 standard. One important difference is that GA,
unlike MPI with its distributed memory model, does not specify explicitly the processor
location where the modified data is located. In addition, GA provides an additional scaling
parameter that increases generality of this operation. This is similar to the BLAS daxpy
operation.

5.7. Disk Resident Arrays
Global Arrays provide a convenient mechanism for programs to store data in a distributed
manner across processors and can be considered as a level in a memory hierarchy. This
particular level can represent the memory of the entire system and is therefore much larger
than the memory on any single processor. However, many applications still require more
memory than is available in core, even when data is distributed. For example, in
computational chemistry there are two strategies for dealing with this situation [72]. The first
is to reorganize the calculation so that intermediate results are no longer stored in memory but
are recomputed when needed. This approach results in excess calculations and the number of
computations increase as the memory requirements are decreased. The cost of these excess
calculations can be reduced by designing hybrid algorithms that store some results and
recompute the remainder with the goal of choosing the partition in a way that simultaneously
minimizes recomputation and memory. The other approach is to write intermediate results to
disk, which typically can store much more data than memory. The tradeoff here is the cost of
recomputing results compared to the I/O cost of writing and reading the data to a file. The
advantage to this approach is that the amount of data that can be stored to disk is usually
orders of magnitude higher than that can be stored in core.

 - 24 -

Disk Resident Arrays (DRAs) are designed to extend the concept of Global Arrays to the file
system, in effect, treating disk as another level in the memory hierarchy [72, 73]. A DRA is
essentially a file, or collection of files, that represent a global array stored on disk. Data stored
in a disk resident array can be copied back and forth between global arrays using simple read
and write commands that are similar to the syntax of the global arrays nga_copy_patch
commands. This operation is illustrated schematically in Figure 15. The collective mode of
operation in DRA increases the opportunities for performance optimizations [74]. Data in the
DRA can be referred to using a global index space, identical to that used in Global Arrays.
The details of how data is partitioned within a single file or divided between multiple files are

Figure 16: Write operation between a patch of a global array to a patch of a disk resident array. Data flows from
the global array to the I/O processors and then is written to disk.

I/O Buffers

SMP nodes

Parallel File System /

Locally Mounted Disk

Figure 15: Schematic of a write operation from a patch of a global array g_a(glo:ghi) to a patch of a disk
resident array d_a(dlo:dhi)

Global Array
Disk Resident Array

ndra_write_section(transp,g_a,glo,ghi,d_a,dlo,dhi,rid)

 - 25 -

hidden from the user, however, the underlying code is designed to partition data on the disk to
optimize I/O. The use of multiple files allows the system to read and write data to disk from
multiple processors. If the local scratch space mounted on each node or a parallel file system
is used for these files, this can greatly increase the bandwidth for reading and writing to the
DRAs. The flow of data for a write statement to a DRA distributed on separate disks is
illustrated schematically in Figure 16.

This example represents a write request from a patch of a global array to a patch of the DRA.
The DRA patch is first partitioned between the different files on disk. Each file is controlled
by a single processor, typically one I/O processor per SMP node. Once the DRA patch has
been decomposed between files, the global array patch is also decomposed so that each
portion of the global array is mapped onto its corresponding portion of the DRA patch. Each
piece of the global array data is then moved to the I/O processor and copied into the I/O
buffer. Once the data is in the I/O buffer, it is then written to disk. This operation can occur
independently on each I/O processor, allowing multiple read/write operations to occur in
parallel. The partitioning of data on the disk is also chosen to optimize I/O for most data
requests. In addition to computational chemistry applications [72], DRAs have been used to
temporarily store large data sets to disk in image processing applications [75].

5.8 GA Processor Groups
GA supports creating and managing arrays on processor groups for the development

of multi-level parallel algorithms [21]. Due to the required compatibility of GA with MPI, the
MPI approach to the processor group management was followed as closely as possible.
However, in shared memory programming management of memory and shared data rather
than management of processor groups itself is the primary focus. More specifically we need to
determine how to create, efficiently access, update, and destroy shared data in the context of
the processor management capabilities that MPI already provides. One of the fundamental
group-aware GA operations involves the ability to create shared arrays on subsets of
processors. Every global array has only one associated processor group specifying the group
that created the array. Another useful operation is the data-parallel copy operation that works
on arrays (or subsections) defined on different processor groups as long as the intersection of
these groups is a non-empty set. In the GA programming model, data distributed in a
processor group (containing M processors) can be redistributed to another processor group
(containing N processors) regardless of the number of processors in each group and the data
layout. This can be done as a collective call across processors in both the groups or as a non-
collective one-sided operation. This feature enabled development of applications with
nontrivial relationships between processor groups.

The concept of the default processor group is a powerful capability added to enable
rapid development of new group-based codes and simplify conversion of the existing non-
group aware codes. Under normal circumstances, the default group for a parallel calculation is
the MPI “world group” (contains the complete set of processors user allocated), but a call is
available that can be used to change the default group to a processor subgroup. This call must
be executed by all processors in the subgroup. Once the default group has been set, all
operations are implicitly assumed to occur on the default processor group unless explicitly
stated otherwise. By default, GA shared arrays are created on the default processor group and

 - 26 -

global operations by default are restricted to the default group. Inquiry functions, such as the
number of nodes and the node ID, return values relative to the default processor group.

5.9 Common Component Architecture (CCA) GA Component
The Common Component Architecture (CCA) is a component model specifically designed for
high performance computing. Components encapsulate well-defined units of reusable
functionality and interact through standard interfaces [36]. The GA component, an object-
oriented CCA based component, provides interfaces to full capabilities of GA. This
component supports both classic and SIDL interfaces, and it provides three ports:
GlobalArrayPort, DADFPort and LinearAlgebraPort. These ports are the set of public
interfaces that the GA component implements and can be referenced and used by other
components. The GlobalArrayPort provides interfaces for creating and accessing distributed
arrays. The LinearAlgebraPort provides core linear algebra support for manipulating vectors,
matrices, and linear solvers. The DADFPort offers interfaces for defining and querying array
distribution templates and distributed array descriptors, following the API proposed by the
CCA Scientific Data Components Working Group [76]. The GA component is currently used
in applications involving molecular dynamics and quantum chemistry, as discussed in [39].

Figure 17 illustrates an example of CCA components in action in a CCA (e.g. CCAFFEINE)
Framework [77]. The GA component adds the “provides” ports, which is visible to other
components to the CCA Services object. TAO component registers the ports that it will need
with the CCA Services object. The CCAFEINE framework connects GA and TAO
components and transfers the LinearAlgebraPort(LA) to the TAO component, using the GA
Component’s Services object.

In [22], experimental results for numerical Hessian calculation show that multilevel
parallelism expressed and managed through the CCA component model and GA processor
groups can be very effective for improving performance and scalability of NWChem. For
example, the numerical Hessian calculation using three levels of parallelism outperformed the
original version of the NWChem code based on single level parallelism by a factor of 90%
when running on 256 processors.

 - 27 -

6 Applications of Global Arrays
The original application for GA was to support electronic structure codes and it remains the
de facto standard for managing data transfer in most programs that perform large, scalable
electronic structure calculations. Electronic structure calculations involve the construction of
large, dense matrices. Once constructed, these are subsequently manipulated using standard
linear algebra operations to produce the final answer. The construction of the matrices is
highly parallel in that it can be divided into a large number of smaller tasks. Each task can be
assigned to a processor, which is then responsible for working on a portion of the matrix and
accumulating the results into a product matrix. The tasks typically require copying a portion
of one matrix into a local buffer, doing some work on it, and then copying and accumulating
the result back into another matrix. The natural decomposition of these tasks is easily
formulated in terms of the dimensions of the original matrices but typically results in copying
portions of the matrix that are distributed over several processors to local buffers. The copy
operations between the local buffer and the distributed matrices therefore require
communication with multiple processors and would be quite complicate if coded using a
standard message-passing interface. Global Arrays can accomplish each copy with a single
function call using the global index space. The matrix operations that must be performed to
get the final answer are also highly non-trivial for distributed data. GA supports many of these
operations directly and also provides interfaces to other linear algebra packages, such as
SCALAPACK. Because all the information about the matrix and how it is distributed are
already contained in the global array, these interfaces are quite simple and reflect the algebra
of the original problem, rather than the details of how the data is distributed.

The ability of Global Arrays to manage large distributed arrays has made them useful in many
other areas beyond electronic structure. Any application that requires large, dense, multi-
dimensional data grids can make use of toolkit. Examples are algorithms and applications
built around dense matrices (e.g. electronic structure) and algorithms on multi-dimensional
grids (hydrodynamics and other continuum simulations). Even algorithms that are based on

GA TAO

addProvidesPort registerUsesPort

GA

 LA

ggeettPPoorrtt

((““ggaa””))
LA

DADF

CCA Framework (e.g. CCAFFEINE)
Figure 17: CCA Components in action. TAO Component uses the LA Port (Linear Algebra) provided by

GA Component for manipulating vectors and matrices.

 - 28 -

sparse data structures (unstructured grids in finite element codes) often convert the original
sparse data to a dense 1-dimensional array. For most of these applications it remains attractive
to treat these data structures as single arrays using a global index space that maps directly
onto the original problem. However, the large amount of data typically involved means that
the data must be distributed, which makes the concept of a single local data structure
impractical. Data must now be accessed by referring to a local index that identifies the data
within a single processor, as well as an index identifying the processor that the data is stored
on. The connection between the original problem and the data is lost and must now be
managed by the application programmer. GA provides higher level abstractions that are
designed to restore the connection between the global index space of the original problem and
the distributed data by providing an interface that manages all the necessary transformations
between the global index space and the local indices that specify where data is actually
located. This approach vastly simplifies programming and thus improves productivity [78].
The toolkit also provides mechanisms for identifying what data is held locally on a processor,
allowing programmers to make use of data locality when designing their programs, and even
provides direct access to the data stored in the global array, which saves on the time and
memory costs associated with duplication.

6.1 Molecular Dynamics
Molecular dynamics (MD) is a computer simulation technique where the time evolution of a
set of interacting atoms is followed by integrating their equations of motion. For this
application, the force between two atoms is approximated by a Lennard-Jones potential
energy function U(r), where r is the distance between two atoms. Good performance and
scalability in the application require an efficient parallel implementation of the objective
function and gradient evaluation. These routines were implemented by using GA to
decompose the atoms over the processors and distribute the computation of forces in an
equitable manner. The decomposition of forces between atoms is based on a block
decomposition of the forces distributed among processors, where each processor computes a
fixed subset of inter-atomic forces [79]. The entire array of forces (N x N) is divided into
multiple blocks (m x m), where m is the block size and N is the total number of atoms. Each
process owns N/P atoms, where P is the total number of processors. Exploiting the symmetry
of forces between two particles halves the amount of computation. The force matrix and atom
coordinates are stored in a global array. A centralized task list is maintained in a global array,
which stores the information of the next block that needs to be computed.

To address the potential load imbalance in our test problem, we use a simple and effective
dynamic load-balancing technique called fixed-size chunking [80]. This is a good example
illustrating the power of shared memory style management of distributed data that makes the
GA implementation both simple and scalable. Initially, all the processes get a block from the
task list. Whenever a process finishes computing its block, it gets the next available block
from the task list. Computation and communication are overlapped by issuing a nonblocking
get call to the next available block in the task list, while computing a block [81]. This
implementation of the dynamic load-balancing technique takes advantage of the atomic and
one-sided operations in the GA toolkit (see Figure 18). The GA one-sided operations
eliminate explicit synchronization between the processor that executes a task and the
processor that has the relevant data. Atomic operations reduce the communication overhead in
the traditional message-passing implementations of dynamic load balancing based on the

 - 29 -

master-slave strategy. This master-slave strategy has associated scalability issues because
with the increased number of processors, management of the task list by a single master
processor becomes a bottleneck. Hierarchical master-slave implementations (with multiple
masters) [82] address that part of the problem; however, they introduce synchronization
between multiple masters that degrades performance. Moreover, the message-passing
implementation of this strategy can be quite complex. On the other hand, the implementation
of dynamic load balancing using GA atomics (fetch-and-increment operation) involves only a
couple of lines of code, while the overall performance of the simulation is competitive with
the MPI-1 version [81].

The experimental results of the molecular dynamics benchmark on a Linux cluster with
Myrinet indicate that using GA resulted in improved application performance over message-
passing, see Figure 19 [81]. This benchmark problem scales well when the number of
processors and/or the problem size is increased, thus proving the solution is cost-optimal. In
best cases, the performance improvement over MPI is greater than 40%.

0

32

64

96

128

160

0 32 64 96 128 160
of Processors

S
p

ee
d

-u
p

32768 atoms

65536 atoms
����������	
�
�������	��������������������������	������� ����������
�������������	�� �� ������������ ���	���������
�������	����������������
����������	���� � ����� ����� ������������	��
����	������������	�� �� ������������ ����� �������
����� �	���������� 	��� �	������� ������
������������! ����	�������	����

���� �����	�� �������	���	���� 	�� ���������	��
�
	
�
������	� 	�� ���� �������� � 	��������	�� ����� 	����������

�������������������	�������� ���	����	�����������	� ��" ��� ��
�����

Figure 18: Function gradient evaluation using GA (left). Speedup in the Lennard-Jones potential energy
optimization for 32,768 and 65,536 atoms (right).

 - 30 -

6.2 Lattice Boltzmann Simulation
A scalar lattice Boltzmann code was converted to use the Global Array libraries [53]. The
lattice Boltzmann algorithm is a method for simulating hydrodynamic flows based on a
discretized version of the Boltzmann equation and is distinguished by its simplicity and
stability[83]. The lattice Boltzmann algorithm is typically implemented on a regular square or
cubic lattice (other lattices, such as the hexagonal lattice [84], are occasionally used) and is
composed of two basic steps. The first is an equilibration step that can be completed at each
lattice site by using only data located at that site, the second is a streaming step that requires
data from all adjacent sites (depending on the particular implementation, this can include
corner and edge sites). The streaming step requires communication because sites
corresponding to the boundaries of the locally held data will need data from other processors.
This is accomplished by padding the locally held data with ghost cells and using the GA
update operation to refresh the data in these ghost cell regions at each time step. A graph of
speedup versus processors is shown below in Figure 20 for a simulation on a 1024x1024
lattice on an IBM SP. The timings show good speedups until quite large numbers of
processors.

An earlier version of this code was created that just used onesided put/get calls to copy a
suitably padded piece of the global lattice to a local buffer. The update was then performed
and the result (minus the padded lattice points) was copied back to the global array. If present,
periodic boundary conditions were handled using the periodic versions of the put/get
operations. This approach is also quite easy to implement, but has some disadvantages relative
to ghost cells. First, more memory is required since the lattice must effectively be duplicated
(once in the global array and again in the local buffers) and second, no advantage is taken of
the potential for optimizing the communication involved in updating the boundary data.

Lennard Jones MD

0

10

20

30

40

50

60

16 32 64 128

Number of Processors

%
 im

pr
ov

em
en

t o
ve

r
M

P
I

12000 atoms

65536 atoms

Figure 19: Performance improvement in the molecular dynamics simulation involving 12000 and 65536

atoms.

 - 31 -

6.3 Electronic structure
As already mentioned, developers of electronic structure codes have elected the Global Arrays
toolkit as a de facto standard as far as communication libraries are concerned. Some of the
most widely used electronic structure codes make use of GA: NWChem [85], Columbus [86],
MOLPRO [87], MOLCAS [88], QChem [89] and GAMESS-UK [90]. Developers of
GAMESS-US [91] have developed their own distributed memory management layer that
implements a subset of GA functionality. Another scalable chemistry code MPQC [92], has
adopted ARMCI. Parallelization of methods implemented in these codes involves the
distribution of dense matrices among processing elements; if N is defined as the number of
basis functions used, methods like Hartree-Fock (HF) [93, 94] or Density-Functional Theory
(DFT) [95, 96] make use of matrices of size N2, whereas correlated methods such as MP2
[97] or Coupled Cluster [98] use quantities whose size scales as the fourth of higher power of
N (leading to larger storage requirements). Typically, N is also proportional to the size of the
system, so larger molecular systems lead to rapid increases in both memory and
computational requirements. This makes it essential to distribute the data associated with each
of the matrices. The task based nature of the algorithms also implies that there is extensive
communication involved in copying back and forth between the distributed arrays and local
buffers.

As an example of the performance of GA for these theoretical methods, some benchmark
numbers are reported for the DFT and MP2 methods (Figures 21 and 22). While the DFT
benchmark scaling requires low interconnect latency, the MP2 runs necessitate high
interconnect bandwidth and high performing disk I/O; therefore, the lower latency of Elan3
vs. Elan4 and of Infiniband vs. Myrinet can be noticed in Figures 21 and 22.

100

1000

10000

1 10 100 1000

Total

Update

Number of Processors
Figure 20: Timings for a lattice Boltzmann simulation on a 1024x1024 lattice on an IBM SP using ghost

cells

 - 32 -

A

A

A

A
A

A
A

A
A A A A A

3

3

3

3

3
3 3

4

4

4

4

4

4
4

4
4

4
4

1 2 3 4 6 8 10 12 16 24 30 36 42 6450

number of CPUs

16

32

64

128

256

W
al

l t
im

e
(s

ec
on

ds
)

W
al

l t
im

e
(s

ec
on

ds
)

Intel PIV 2.4GHz || IB
HP Itanium2 1.5GHZ || Elan44 4
HP Itanium2 1.5GHz || Elan33 3
Intel PIV 2.4GHz||Myrinet
SGI Altix 1.5GHzA A

Figure 21: DFT LDA energy calculation on a Si8O7H18 zeolite fragment, 347 basis functions

 - 33 -

M

M

M

M

M

M

M
M M

1 2 4 8 16 32 64 128 256
Number of CPUs

32

64

128

256

512

1024

2048

4096

W
al

l t
im

e
(s

ec
on

ds
)

HP Itanium2 1.0GHz || Elan3
HP EV68 1GHz || Elan3
HP Itanium2 900MHz || Myrinet
HP Itanium2 1.5GHz || Elan3M M

Figure 22: MP2 Energy + gradient calculation on a (H2O)7 cluster, 287 basis functions

Figure 23: SiOSi3 benchmark using mirrored and fully distributed approach on a 1GHZ Itanium2 dual

processor system with three different interconnects: Ethernet, Myrinet, or Elan3 (Quadrics)

M

Ethernet Distributed
Ethernet Mirrored
Elan3 Distributed
Elan3 Mirrored
Myrinet Distributed
Myrinet Mirrored

1 2 4 8 16 24 32 48

0.75

1

2

4

8

16

24

Ti
m

e
[s

]

Processors

 - 34 -

6.3.1 Mirrored Arrays in Density Functional Theory

The mirrored arrays functionality has been implemented in the Gaussian function-based DFT
module of NWChem [65, 85]. More precisely, it has been implemented in the evaluation of
the matrix representation of Exchange-Correlation (XC) potential on a numerical grid [99].
Prior to the current work, this quantity was evaluated using a distributed data approach, where
the main arrays were distributed among the processing elements by using the GA library.

This algorithm is very similar to the Hartree-Fock (a.k.a. SCF) algorithm, since both methods
are characterized by the utilization of two main 2-dimensional arrays. The major steps of this
algorithm require the generation of a density matrix from a parallel matrix multiply into a
distributed global array representing the density matrix. Portions of this matrix must be copied
to a local buffer where they are used to evaluate the density, which is then used to evaluate a
portion of the Kohn-Sham matrix. This is copied back out to another distributed array. The
construction of the Kohn-Sham matrix requires repeated use of the nga_get, and nga_acc
methods and involves significant communication. Doing this portion of the calculation on
mirrored arrays guarantees that all this communication occurs via shared memory and results
in a significant increase in scalability. Results for a DFT calculation using the mirrored arrays
on a standard chemical system are shown in Figure 23. The system is a 1GHZ Itanium2 dual
processor system with three different interconnects: Ethernet, Myrinet, or Elan3 (Quadrics).
The results show that scalability for the mirrored calculation is improved on all three
networks over the fully distributed approach, with especially large improvements for the
relatively slow Ethernet.

Surprisingly, Myrinet, which represents a network with intermediate performance, shows the
smallest overall improvement on going from distributed to mirrored arrays. The expectation
would be that Elan3 would show the least amount of improvement, since this is the fastest
network and latency would not be expected to contribute as significantly to overall
performance.

6.4 AMR-based Computational Physics
Grid generation is a fundamental part of any mesh-based computational physics problem. The
NWGrid/NWPhys package integrates automated grid generation, time-dependent adaptivity,
applied mathematics, and numerical analysis for hybrid grids on distributed parallel
computing systems. This system transforms geometries into computable hybrid grids upon
which computational physics problems can then be solved. NWGrid is used as the
preprocessing grid generator [100] for NWPhys, setting up the grid, applying boundary and
initial conditions, and defining the run-time parameters for the NWPhys calculations.
NWGrid provides the grid partitioning functions and the time-dependent grid generation
functions for adaptive mesh refinement (AMR), reconnection, smoothing, and remapping.
The main tool used by NWGrid to perform partitioning is METIS [101]. To make use of
METIS the multi-dimensional, hybrid, unstructured mesh is transformed into a two-
dimensional graph, where nodes (or elements) form the diagonal entries of the graph and
node-node (element-element) connections form the off-diagonal entries. NWPhys moves the
grid according to forcing functions in non-linear physics drivers and NWGrid fixes it up
based on grid topology and grid quality measures. Extensions of NWPhys include

 - 35 -

incorporating new packages for fluid-solid interactions, computational electromagnetics,
particle transport, chemistry, and aerosol transport.

of processors Time(sec)

 1 1690

 2 1974

 4 2222

 8 2293

 16 2343

 32 2355

 64 2384

128 2390

Table 2: Timing Results for a problem with 10,000 elements per processor and 1320 cycles. The problem size
increases proportionally to the number of processors.

All of this functionality relies heavily on one dimensional representation of the grid data and
operators defined on the grid. The package is implemented on top of GA, and makes
extensive use of the operations supporting sparse data management, described above in
Section 5.2. Figure 24 demonstrates performance of human lung modeling on a Linux cluster,
indicating excellent scaling for this application. This problem involves one million grid

100

1000

10000

8 16 32 64 128

number of processors

tim
e

[s
ec

on
ds

]

Figure 24: Human lung modeling using NWPhys/NWGrid – mesh discretization on the left for 16 procesoors
and the parallel execution timings on a Linux cluster on the right

 - 36 -

elements and the simulation involved 360 cycles. The scaling of the absolute time and grind-
time (time/cycle/element) is approximately linear, mainly because of the (near) optimal
partitioning of the data and work per processor. Table 2 shows the timing results of a problem
that grows as the number of processors grows. The problem was defined to have 10,000
elements per processor. So, 32 processors had 320,000 elements and 64 processors had
640,000 elements. The scaling is relatively constant as the problem size and number of
processors grow. In numerous applications, the performance has been demonstrated to scale
linearly with the number of processors and problem size, as most unstructured mesh codes
that use optimal data partitioning algorithms should.

7. Conclusions
This paper gives an overview of the functionality and performance of the Global Arrays
toolkit. GA was created to provide application programmers with an interface that allows
them to distribute data while maintaining the type of global index space and programming
syntax similar to what is available when programming on a single processor. The details of
identifying data location and mapping indices can be left to the toolkit, thereby reducing
programming effort and the possibility of error. For many problems, the overall volume of
code that must be created to manage data movement and location is significantly reduced.

The Global Array toolkit has been designed from the start to support shared memory style
communication, which offers numerous possibilities for further code optimizations beyond
what are available in traditional message-passing models. The shared communication model
of GA also maps closely to current hardware and the low level communication primitives on
which most communication libraries are built. In GA, the shared memory model is supported
by ARMCI, which is an explicitly one-sided communication library. The availability of non-
blocking one-sided protocols provides additional mechanisms for increasing the scalability of
parallel codes by allowing programmers to overlap communication with computation. By
“pipelining” communication and computation, the overhead of transferring data from remote
processors can be almost completely overlapped with calculations. This can substantially
reduce the performance penalty associated with remote data access on large parallel systems.

The Global Array toolkit also offers many high-level functions traditionally associated with
arrays, eliminating the need for programmers to write these functions themselves. Examples
are standard vector operations such as dot products and matrix multiplication, scaling an array
or initializing it to some value, and interfaces to other parallel libraries that can solve linear
equations or perform matrix diagonalizations. Again, this drastically cuts down on the effort
required from the application programmer and makes it less error prone.

The widespread availability and vendor support for MPI has lead to a corresponding
assumption that the message-passing paradigm is the best way to implement parallel
algorithms. However, practical experience suggests that even relatively simple operations
involving the movement of data between processors can be difficult to program. The goal of
the Global Array toolkit is to free the programmer from the low level management of
communication and allow them to deal with their problems at the level at which they were
originally formulated. At the same time, compatibility of GA with MPI enables the
programmer to take advantage of the existing MPI software/libraries when available and
appropriate. The variety of applications that have been implemented using Global Arrays
attests to the attractiveness of using higher level abstractions to write parallel code.

 - 37 -

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy (DOE) at
Pacific Northwest National Laboratory (PNNL) operated for DOE by Battelle Memorial
Institute. It was supported by the DoE-2000 ACTS project, Center for Programming Models
for Scalable Parallel Computing, both sponsored by the Mathematical, Information, and
Computational Science Division of DOE’s Office of Computational and Technology
Research, and the Environmental Molecular Sciences Laboratory. PNNL is operated by
Battelle for the U.S. DOE under Contract DE-AC06-76RLO-1830.The Global Arrays toolkit
would not exist without the invaluable contributions from computational scientists who
provided requirements, feedback, and encouragement for our efforts, and in some cases
directly became involved in the toolkit development.

References
[1] H. Shan and J. P. Singh, "A Comparison of Three Programming Models for Adaptive

Applications on the Origin2000," in proceedings of Supercomputing, 2000.

[2] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, "Global Arrays: A Portable Shared
Memory Programming Model for Distributed Memory Computers," in proceedings of
Supercomputing, 1994.

[3] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, "Global arrays: A nonuniform
memory access programming model for high-performance computers," Journal of
Supercomputing, vol. 10, pp. 169-189, 1996.

[4] J. Nieplocha, R. J. Harrison, M. Krishnan, B. Palmer, and V. Tipparaju, "Combining
shared and distributed memory models: Evolution and recent advancements of the
Global Array Toolkit," in proceedings of POHLL'2002 workshop of ICS-2002, NYC,
2002.

[5] Y. Zhou, L. Iftode, and K. Li, "Performance Evaluation of Two Home-Based Lazy
Release Consistency Protocols for Shared Virtual Memory Systems," in proceedings
of Operating Systems Design and Implementation Symposium, 1996.

[6] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and K. Warren,
"Introduction to UPC and Language Specification," Center for Computing Sciences
CCS-TR-99-157, 1999.

[7] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P.
Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken, "Titanium: A high-
performance Java dialect," Concurrency Practice and Experience, vol. 10, pp. 825-
836, 1998.

[8] R. W. Numrich and J. K. Reid, "Co-Array Fortran for parallel programming," ACM
Fortran Forum, vol. 17, pp. 1-31, 1998.

[9] "High Performance Fortran Forum, High Performance Fortran Language
Specification, version 1.0," in Scientific Programming, vol. 2, 1993.

[10] L. Snyder, A programmer's guide to ZPL: MIT Press, 1999.

 - 38 -

[11] P. J. Hatcher and M. J. Quinn, Data-Parallel Programming on MIMD Computers: The
MIT Press, 1991.

[12] J. Nieplocha, R. Harrison, J., and I. Foster, "Explicit Management of Memory
Hierarchy," Advances in High Performance Computing, pp. 185-200, 1996.

[13] ACTS -- Advanced Computational Testing and Simulation. http://www-
unix.mcs.anl.gov/DOE2000/acts.html.

[14] The DOE ACTS Collection. http://acts.nersc.gov/.

[15] J. J. Dongarra, J. D. Croz, S. Hammarling, and I. Duff, "Set of Level 3 Basic Linear
Algebra Subprograms," ACM Transactions on Mathematical Software, vol. 16, pp. 1-
17, 1990.

[16] J. Nieplocha and B. Carpenter, "ARMCI: A Portable Remote Memory Copy Library
for Distributed Array Libraries and Compiler Run-time Systems," in proceedings of
RTSPP of IPPS/SDP'99, 1999.

[17] H. Dachsel, J. Nieplocha, and R. Harrison, J., "An out-of-core implementation of the
COLUMBUS massively-parallel multireference configuration interaction program," in
proceedings of High Performance Networking and Computing Conference, SC98,
1998.

[18] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley,
"ScaLAPACK: A Linear Algebra Library for Message-Passing Computers," in
proceedings of Eighth SIAM Conference on Parallel Processing for Scientific
Computing, Minneapolis, MN, 1997.

[19] R. A. VanDeGeijn and J. Watts, "SUMMA: Scalable universal matrix multiplication
algorithm," Concurrency-Practice and Experience, vol. 9, pp. 255-274, 1997.

[20] S. Benson, L. McInnes, and J. J. Moré. Toolkit for Advanced Optimization (TAO)
Web page. http: //www.mcs.anl.gov/tao.

[21] J. Nieplocha, M. Krishnan, B. Palmer, V. Tipparaju, and Y. Zhang, "Exploiting
Processor Groups to Extend Scalability of the GA Shared Memory Programming
Model," in proceedings of ACM Computing Frontiers, Italy, 2005.

[22] M. Krishnan, Y. Alexeev, T. L. Windus, and J. Nieplocha, "Multilevel Parallelism in
Computational Chemistry using Common Component Architecture and Global
Arrays," in proceedings of Supercomputing, Seattle, WA, USA, 2005.

[23] MPI-2. Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing
Interface. www.mpi-forum.org.

[24] R. Bariuso and A. Knies, SHMEM's User's Guide: Cray Research, Inc., 1994.

[25] G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison, R. K. Govindaraju, K. Gildea, P.
DiNicola, and C. Bender, "Performance and experience with LAPI-a new high-
performance communication library for the IBM RS/6000 SP," in proceedings of
International Parallel Processing Symposium IPPS/SPDP, 1998.

 - 39 -

[26] R. D. Loft, S. J. Thomas, and J. M. Dennis, "Terascale spectral element dynamical
core for atmospheric general circulation models," in proceedings of 2001 ACM/IEEE
conference on Supercomputing (CDROM), Denver, Colorado, 2001.

[27] D. S. Henty, "Performance of hybrid message-passing and shared-memory parallelism
for discrete element modeling," in proceedings of Supercomputing, 2000.

[28] A. L. Cox, S. Dwarkadas, H. Lu, and W. Zwaenepoel, "Evaluating the performance of
software distributed shared memory as a target for parallelizing compilers," in
proceedings of 1997 11th International Parallel Processing Symposium, IPPS 97, Apr
1-5 1997, Geneva, Switz, 1997.

[29] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon, "Midway distributed shared
memory system," in proceedings of 38th Annual IEEE Computer Society International
Computer Conference - COMPCON SPRING '93, Feb 22-26 1993, San Francisco,
CA, USA, 1993.

[30] V. W. Freeh and G. R. Andrews, "Dynamically controlling false sharing in distributed
shared memory," in proceedings of 1996 5th IEEE International Symposium on High
Performance Distributed Computing, Aug 6-9 1996, Syracuse, NY, USA, 1996.

[31] A. Basumallik, S.-J. Min, and R. Eigenmann, "Towards OpenMP execution on
software distributed shared memory systems," in proceedings of Int'l Workshop on
OpenMP: Experiences and Implementations (WOMPEI'02), 2002.

[32] M. S. Lam, E. E. Rothberg, and M. E. Wolf, "Cache performance and optimizations of
blocked algorithms," in proceedings of 4th International Conference on Architectural
Support for Programming Languages and Operating Systems, Apr 8-11 1991, Santa
Clara, CA, USA, 1991.

[33] J. Nieplocha, J. Ju, M. Krishnan, B. Palmer, and V. Tipparaju, "The Global Arrays
User's Manual," Pacific Northwest National Laboratory PNNL-13130, 2002.

[34] C. Scheurich and M. Dubois, "Correct memory operation of cache-based
multiprocessors," in proceedings of 14th annual international symposium on Computer
architecture, Pittsburgh, Pennsylvania, United States, 1987.

[35] M. Dubois, C. Scheurich, and F. Briggs, "Memory access buffering in
multiprocessors," in proceedings of 13th annual international symposium on Computer
architecture, Tokyo, Japan, 1986.

[36] CCA-Forum. Common Component Architecture Forum. http://www.cca-forum.org.

[37] M. Krishnan and J. Nieplocha, "SRUMMA: a matrix multiplication algorithm suitable
for clusters and scalable shared memory systems," in proceedings of Parallel and
Distributed Processing Symposium, 2004.

[38] M. Krishnan and J. Nieplocha, "Optimizing Parallel Multiplication Operation for
Rectangular and Transposed Matrices," in proceedings of 10th IEEE International
Conference on Parallel and Distributed Systems (ICPADS'04). 2004.

[39] S. Benson, M. Krishnan, L. McInnes, J. Nieplocha, and J. Sarich, "Using the GA and
TAO toolkits for solving large-scale optimization problems on parallel computers,"

 - 40 -

Trans. on Mathematical Software, submitted to ACTS Collection special issue,
Preprint ANL/MCS-P1084-0903, 2003.

[40] S. Balay. PETSc home page. http://www.mcs.anl.gov/petsc.

[41] CUMULVS. CUMULVS Home Page. http://www.csm.ornl.gov/cs/cumulvs.html.

[42] PeIGS. PeIGS Home Page.
http://www.emsl.pnl.gov/docs/nwchem/doc/peigs/docs/peigs3.html.

[43] T. Dahlgren, T. Epperly, and G. Kumfert, "Babel/SIDL Design-by-Contract: Status,"
Lawrence Livermore National Laboratory UCRLPRES-152674, 2003.

[44] pmodels. Center for Programming Models for Scalable Parallel Computing.
www.pmodels.org.

[45] K. Parzyszek, J. Nieplocha, and R. A. Kendall, "Generalized Portable SHMEM
Library for High Performance Computing," in proceedings of IASTED Parallel and
Distributed Computing and Systems, Las Vegas, Nevada, 2000.

[46] C. Coarfa, Y. Dotsenko, J. Eckhardt, and J. Mellor-Crummey, "Co-Array Fortran
Performance and Potential: An NPB Experimental Study," in proceedings of 16th
International Workshop on Languages and Compilers for Parallel Computing, 2003.

[47] B. Carpenter, "Adlib: A distributed array library to support HPF translation," in
proceedings of 5th International Workshop on Compilers for Parallel Computers,
University of Malaga, Malaga, Spain, 1995.

[48] J. Nieplocha, V. Tipparaju, A. Saify, and D. K. Panda, "Protocols and strategies for
optimizing performance of remote memory operations on clusters," in proceedings of
Communication Architecture for Clusters (CAC'02) Workshop, held in conjunction
with IPDPS '02, 2002.

[49] J. Nieplocha, E. Apra, J. Ju, and V. Tipparaju, "One-Sided Communication on
Clusters with Myrinet," Cluster Computing, vol. 6, pp. 115-124, 2003.

[50] V. Tipparaju, G. Santhmaraman, J. Nieplocha, and D. K. Panda, "Host-assised zero-
copy remote memory access communication on Infiniband," in proceedings of
International Parallel and Distributed Computing Symposium (IPDPS), Santa Fe, NM,
USA, 2004.

[51] J. Nieplocha, J. L. Ju, and T. P. Straatsma, "A multiprotocol communication support
for the global address space programming model on the IBM SP," in Euro-Par 2000
Parallel Processing, Proceedings, vol. 1900, Lecture Notes in Computer Science,
2000, pp. 718-728.

[52] R. H. Nobes, A. P. Rendell, and J. Nieplocha, "Computational chemistry on Fujitsu
vector-parallel processors: Hardware and programming environment," Parallel
Computing, vol. 26, pp. 869-886, 2000.

[53] B. Palmer and J. Nieplocha, "Efficient Algorithms for Ghost Cell Updates on Two
Classes of MPP Architectures," in proceedings of Parallel and Distributed Computing
and Systems (PDCS 2002), Cambridge, USA, 2002.

 - 41 -

[54] J. A. Crotinger, J. Cummings, S. Haney, W. Humphrey, S. Karmesian, J. Reynders, S.
Smith, and T. J. Williams, "Generic Programming in POOMA and PETE,"
Programming Lecture Notes in Computational Science, vol. 1766, pp. 218, 2000.

[55] S. Baden, P. Collela, D. Shalit, and B. Van Straalen, "Abstract Kelp," in proceedings
of International Conference on Computational Science, San Francisco, CA, 2001.

[56] D. L. Brown, W. D. Henshaw, and D. J. Quinlan, "Overture: An Object-Oriented
Framework for Solving Partial Differential Equations on Overlapping Grids," in
proceedings of SIAM Conference on Object-Oriented Methods for Scientific
Computing, 1999.

[57] C. Douglas, J. Hu, J. Ray, D. Thorne, and R. Tuminaro, "Fast, Adaptively Refined
Computational Elements in 3D," in proceedings of International Conference on
Scientific Computing, 2002.

[58] S. Chatterjee, G. E. Blelloch, and M. Zagha, "Scan primitives for vector computers,"
in proceedings of Supercomputing, New York, New York, United States, 1990.

[59] G. E. Blelloch, M. A. Heroux, and M. Zagha, "Segmented Operations for Sparse
Matrix Computation on Vector Multiprocessor," Carnegie Mellon University CMU-
CS-93-173, 1993.

[60] NWGrid. NWGrid Home Page. http://www.emsl.pnl.gov/nwgrid.

[61] NWPhys. The NWPhys homepage. http://www.emsl.pnl.gov/nwphys.

[62] J. B. White and S. W. Bova, "Where's the overlap? Overlapping communication and
computation in several popular mpi implementations," in proceedings of Third MPI
Developers' and Users' Conference, 1999.

[63] B. Lawry, R. Wilson, A. B. Maccabe, and R. Brightwell, "COMB: A Portable
Benchmark Suite for Assessing MPI Overlap," in proceedings of IEEE Cluster'02,
2002.

[64] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. P. Kini, W. Yu, D. Buntinas, P.
Wyckoff, and D. K. Panda, "Performance Comparison of MPI implementations over
Infiniband, Myrinet and Quadrics," in proceedings of Int'l Conference on
Supercomputing, (SC'03), 2003.

[65] B. Palmer, J. Nieplocha, and E. Apra, "Shared memory mirroring for reducing
communication overhead on commodity networks," in proceedings of International
Conference on Cluster Computing, 2003.

[66] J. Nieplocha and R. J. Harrison, "Shared memory NUMA programming on I-WAY,"
in proceedings of High Performance Distributed Computing, 1996.

[67] J. Nieplocha and R. J. Harrison, "Shared memory programming in metacomputing
environments: The global array approach," Journal of Supercomputing, vol. 11, pp.
119-136, 1997.

[68] M. Gupta and E. Schonberg, "Static Analysis to Reduce Synchronization Costs of
Data-Parallel Programs," in proceedings of ACM Symposium on Principles of
Programming Languages (POPL), 1996.

 - 42 -

[69] U. Legedza and W. E. Weihl, "Reducing synchronization overhead in parallel
simulation," in proceedings of 10th Workshop on Parallel and Distributed Simulation,
Philadelphia, Pennsylvania, 1996.

[70] M. O'Boyle and E. Stöhr, "Compile Time Barrier Synchronization Minimization,"
IEEE Transactions on Parallel and Distributed System, vol. 13, 2002.

[71] D. Buntinas, A. Saify, D. K. Panda, and J. Nieplocha, "Optimizing synchronization
operations for remote memory communication systems," in proceedings of Parallel
and Distributed Processing Symposium, 2003.

[72] J. Nieplocha, I. Foster, and R. A. Kendall, "ChemIO: High performance parallel I/O
for computational chemistry applications," International Journal of High Performance
Computing Applications, vol. 12, pp. 345-363, 1998.

[73] J. Nieplocha and I. Foster, "Disk resident arrays: an array-oriented I/O library for out-
of-core computations," in proceedings of Frontiers of Massively Parallel Computing,
1996.

[74] Y. Chen, J. Nieplocha, I. Foster, and M. Winslett, "Optimizing collective I/O
performance on parallel computers: a multisystem study," in proceedings of 11th
International Conference on Supercomputing, Vienna, Austria, 1997.

[75] D. R. Jones, E. R. Jurrus, B. D. Moon, and K. A. Perrine, "Gigapixel-size Real-time
Interactive Image Processing with Parallel Computers," in proceedings of Workshop
on Parallel and Distributed Image Processing, Video Processing, and Multimedia,
PDIVM 2003, IPDPS 2003 Workshops, Nice, France, 2003.

[76] CCA-DCWG. Comparison of distributed array descriptors (DAD) as proposed and
implemented for SC01 demos. http://www.csm.ornl.gov/~bernhold/cca/data.

[77] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, and
B. Smolinski, "Toward a common component architecture for high-performance
scientific computing," in proceedings of Eighth International Symposium on High
Performance Distributed Computing, 1999.

[78] D. E. Bernholdt, J. Nieplocha, and P. Sadayappan, "Raising the Level of Programming
Abstraction in Scalable Programming Models," in proceedings of HPCA Workshop on
Productivity and Performance in High-End Computing (P-PHEC 2004), Madrid,
Spain, 2004.

[79] S. Plimpton and G. Heffelfinger, "Scalable parallel molecular dynamics on MIMD
supercomputers," in proceedings of Scalable High Performance Computing
Conference, 1992.

[80] C. P. Kruskal and A. weiss, "Allocating independent subtasks on parallel processors,"
IEEE Trans. Softw. Eng., vol. 11, pp. 1001-1016, 1985.

[81] V. Tipparaju, M. Krishnan, J. Nieplocha, G. Santhanaraman, and D. Panda,
"Exploiting non-blocking remote memory access communication in scientific
benchmarks," in High Performance Computing - HiPC, vol. 2913, Lecture Notes in
Computer Science, 2003, pp. 248-258.

 - 43 -

[82] T. Matthey and J. A. Izaguirre, "ProtoMol: A Molecular Dynamics Framework with
Incremental Parallelization," in proceedings of Tenth SIAM Conf. on Parallel
Processing for Scientific Computing (PP01), 2001.

[83] U. Frisch, d'Humieres, D., Hasslacher, B., Lallemand, P., Pomeau, Y., and Rivet, J-P.,
"Lattice Gas Hydrodynamics in Two and Three Dimensions," Complex Systems, vol.
1, pp. 649, 1987.

[84] U. Frisch, Hasslacher, P., and Pomeau, Y., "Lattice-Gas Automata for the Navier-
Stokes Equation," Phys. Rev. Lett., vol. 56, pp. 1505, 1986.

[85] R. A. Kendall, E. Apra, D. E. Bernholdt, E. J. Bylaska, M. Dupuis, G. I. Fann, R. J.
Harrison, J. L. Ju, J. A. Nichols, J. Nieplocha, T. P. Straatsma, T. L. Windus, and A.
T. Wong, "High performance computational chemistry: An overview of NWChem a
distributed parallel application," Computer Physics Communications, vol. 128, pp.
260-283, 2000.

[86] H. Dachsel, H. Lischka, R. Shepard, J. Nieplocha, and R. J. Harrison, "A massively
parallel multireference configuration interaction program: The parallel COLUMBUS
program," Journal of Computational Chemistry, vol. 18, pp. 430-448, 1997.

[87] A. J. Dobbyn, P. J. Knowles, and R. J. Harrison, "Parallel internally contracted
multireference configuration interaction," Journal of Computational Chemistry, vol.
19, pp. 1215-1228, 1998.

[88] G. Karlstrom, R. Lindh, P. A. Malmqvist, B. O. Roos, U. Ryde, V. Veryazov, P. O.
Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, and L. Seijo, "MOLCAS: a
program package for computational chemistry," Computational Materials Science,
vol. 28, pp. 222-239, 2003.

[89] J. Kong, C. A. White, A. I. Krylov, D. Sherrill, R. D. Adamson, T. R. Furlani, M. S.
Lee, A. M. Lee, S. R. Gwaltney, T. R. Adams, C. Ochsenfeld, A. T. B. Gilbert, G. S.
Kedziora, V. A. Rassolov, D. R. Maurice, N. Nair, Y. H. Shao, N. A. Besley, P. E.
Maslen, J. P. Dombroski, H. Daschel, W. M. Zhang, P. P. Korambath, J. Baker, E. F.
C. Byrd, T. Van Voorhis, M. Oumi, S. Hirata, C. P. Hsu, N. Ishikawa, J. Florian, A.
Warshel, B. G. Johnson, P. M. W. Gill, M. Head-Gordon, and J. A. Pople, "Q-chem
2.0: A high-performance ab initio electronic structure program package," Journal of
Computational Chemistry, vol. 21, pp. 1532-1548, 2000.

[90] M. F. Guest, J. H. V. Lenthe, J. Kendrick, K. Schoffel, and P. Sherwood, "GAMESS -
UK: Version 6.3."

[91] G. D. Fletcher, M. W. Schmidt, B. M. Bode, and M. S. Gordon, "The Distributed Data
Interface in GAMESS," Computer Physics Communications, vol. 128, pp. 190-200,
2000.

[92] C. L. Janssen, E. T. Seidl, and M. E. Colvin, "Object-oriented implementation of a
Parallel Ab-initio Program," Parallel Computing in Computational Chemistry ACS
Symposium Series, American Chemical Society, Washington,DC, 1995, vol. 592, pp.
47, 1995.

[93] V. A. Fock, "Naherungsmethode zur Losung des quantenmechanischen
Mehrkorperproblems," Zeit. für Phys, vol. 61, pp. 126, 1930.

 - 44 -

[94] D. R. Hartree, "The Wave Mechanics of an Atom in a Non-Coulomb Central Field,"
Proc. Camb. Phil. Soc., vol. 24, pp. 89, 1928.

[95] P. Hohenberg and W. Kohn, "Inhomogenoeous electron gas," Phys. Rev., vol. 136,
1964.

[96] S. Kohn and L. Sham, "Self-consistent equations including exchange and correlation
effects," Phys. Rev., vol. 140, 1965.

[97] C. Møller and S. Plesset, "Note on an Approximation Treatment for Many-Electron
Systems," Phys. Rev, vol. 46, 1934.

[98] J. Cìzek, "On the use of the cluster expansion and the technique of diagrams in
calculations of the correlations effects in atoms and molecules," Adv. Chem. Phys, vol.
14, pp. 35, 1969.

[99] A. D. Becke, "A Multicenter Numerical-Integration Scheme for Polyatomic-
Molecules," Journal of Chemical Physics, vol. 88, pp. 2547-2553, 1988.

[100] H. E. Trease and e. al., "Grid Generation Tools for Performing Feature Extraction,
Image Reconstruction, and Mesh Generation on Digital Volume Image Data for
Computational Biology Applications," in proceedings of 8th International Conference
On Grid Generation and Scientific Applications, Honolulu, Hawaii, 2002.

[101] metis. METIS. http://www-users.cs.umn.edu/~karypis/metis.

 - 45 -

Appendix A
Figure A2 illustrates that programming based on GA is relatively simple. For the parallel
transposition of 1-dimensional array (Figure A1) thanks to the high-level interfaces for array
management provided by GA, the code size reduces by a factor of three when compared to the
MPI version. In the MPI version, each task has to identify where (tasks ranks) to send the
data. Say in Figure A1, task P0 owns first 50 elements (i.e. 0-49) of the distributed array and
after transposition, the data owned by task P0 is moved to P2 and P3 (P0 sends elements 0-46
to task P3 and 47-49 to task P2). Similarly P3 sends the last 47 elements to P0, and P2 sends its
last 3 elements to P0. Thus the programmer has to identify how many receives (MPI_Recv)
each task has to post, to obtain the corresponding data. Each task should also send the global
indices of the data to the receiving task. The MPI code would become more complicated to
handle two-dimensional arrays. In case of GA, the programmer would only have to specify
the indices of the 2-dimensional array block to be transposed.

/************ GA VERSION *************/
#define NDIM 1
#define TOTALELEMS 197

int main(int argc, char **argv) {
 int dims,chunk,nprocs,me,i,lo,hi,lo2,hi2,ld;
 int g_a, g_b, a[TOTALELEMS],b[TOTALELEMS];

 GA_Initialize();
 me = GA_Nodeid();
 nprocs = GA_Nnodes();
 dims = nprocs*TOTALELEMS;
 chunk = ld = TOTALELEMS;

 /* create a global array */
 g_a = GA_Create(C_INT, NDIM, dims, "array A", chunk);
 g_b = GA_Duplicate(g_a, "array B");

 /* INITIALIZE DATA IN GA */
 GA_Enumerate(g_a, 0);

 GA_Distribution(g_a, me, lo, hi);
 GA_Get(g_a, lo, hi, a, ld);
 // INVERT DATA LOCALLY
 for (i=0; i<nelem; i++) b[i] = a[nelem-1-i];
 // INVERT DATA GLOBALLY
 lo2 = dims - hi -1;
 hi2 = dims - lo -1;
 GA_Put(g_a,lo2,hi2,b,ld);

 GA_Terminate();
}

/************ MPI VERSION *************/
#define TOTALELEMS 197
#define MAXPROC 128
#define MIN(a,b) ((a) < (b) ? (a) : (b))

int main(int argc, char **argv) {
 int *a, *b, me, nprocs, i, j, np=0,start=-1,lo2, hi2;
 int global_idx,local_idx, rem, local_count, position,

bytes;
 char *send_buf, **recv_buf;
 int lo[MAXPROC],hi[MAXPROC], count[MAXPROC];
 int nrecv[MAXPROC], nrecv2[MAXPROC], to[MAXPROC],

elems_per_proc[MAXPROC];
 MPI_Status status;
 MPI_Request request[MAXPROC];

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &me);

 /* distributed array, where each process has

elems_per_proc elements */
 rem = TOTALELEMS;
 elems_per_proc[0] = MIN(rem, TOTALELEMS/nprocs+1);
 lo[0]=0; hi[0]=elems_per_proc[0]-1;
 rem -= elems_per_proc[0];
 for(i=1; i<nprocs; i++) {
 elems_per_proc[i] = MIN(rem, TOTALELEMS/nprocs+1);
 lo[i]=hi[i-1]+1; hi[i]=lo[i]+elems_per_proc[i]-1;
 rem -= elems_per_proc[i];
 }
 /* initialize */
 a = (int*)malloc(sizeof(int)*elems_per_proc[me]);
 b = (int*)malloc(sizeof(int)*elems_per_proc[me]);
 for(i=0; i<elems_per_proc[me]; i++)

a[i]=elems_per_proc[0]*me+i;

 0 1 2 49 50 51 52 99 100 101 102 149 150 151 152 196

P0 P1 P2 P3

(a)

196 195 194 147 146 145 144 97 96 95 94 47 46 45 44 0 (b)

Figure A1: Example of parallel transposing of 1-d array (197 elements) on 4 processors. (a) Distributed
integer array with 50 elements each, except processor P3 with 47 elements. Array values initialized from 0 to
196. (b) Final result.

 - 46 -

 for(i=0; i<elems_per_proc[me]; i++) b[i]=-1;
 for(i=0; i<nprocs; i++) nrecv[i]=0;

 /* INVERT DATA LOCALLY */
 for(i=0; i<elems_per_proc[me]; i++)
 b[i]=a[elems_per_proc[me]-1-i];

 /* identify where to send the data */
 lo2 = TOTALELEMS-1-hi[me];
 hi2 = TOTALELEMS-1-lo[me];

 /* find process(es) rank, where data has to be sent */
 for(i=0; i<nprocs; i++)
 if(lo2>=lo[i] && lo2<=hi[i])
 i=start; np=0;
 do {
 nrecv[i]=1;
 to[np]=i;
 ++np;
 }while (hi2>hi[i++]);

 /* count # of elems to be sent for each destination

processes */
 count[0] = hi[start]-lo2+1;
 if(np>0) {
 for(i=start+1,j=1; i<start+np-1; i++,j++)
 count[j]=hi[i]-lo[i]+1;
 count[np-1] = hi2-lo[start+np-1]+1;
 }

 /* broadcast the number of recv's for each process */
 MPI_Allreduce(nrecv, nrecv2, nprocs, MPI_INT, MPI_SUM,

MPI_COMM_WORLD);

 /* INVERT DATA GLOBALLY */
 global_idx=lo2; local_idx=0;
 bytes = sizeof(int)*(elems_per_proc[me]+1);
 send_buf = (char*)malloc(bytes);
 recv_buf = (char**)malloc(nrecv2[me]*sizeof(char*));

 /* Post the receive's */
 for(i=0; i<nrecv2[me]; i++) {
 recv_buf[i] = (char*)malloc(bytes);

 MPI_Irecv(recv_buf[i], bytes, MPI_PACKED,

MPI_ANY_SOURCE, 555, MPI_COMM_WORLD, &request[i]);
 }

 for(i=0; i<np; i++) { /*pack global idx actual data*/
 position = 0;
 MPI_Pack(&global_idx, 1, MPI_INT, send_buf, bytes,

&position, MPI_COMM_WORLD);
 MPI_Pack(&b[local_idx], count[i], MPI_INT,

send_buf, bytes, &position, MPI_COMM_WORLD);
 MPI_Send(send_buf, position, MPI_PACKED, to[i],

555, MPI_COMM_WORLD);
 local_idx += count[i];
 global_idx = lo2+count[i];
 }

 for(i=0; i<nrecv2[me]; i++) {
 MPI_Wait(&request[i], &status);
 MPI_Get_count(&status, MPI_INT, &local_count);
 position = 0;
 MPI_Unpack(recv_buf[i], bytes, &position,

&global_idx, 1, MPI_INT, MPI_COMM_WORLD);
 local_idx = global_idx - me*elems_per_proc[0];
 MPI_Unpack(recv_buf[i], bytes, &position,

&a[local_idx], local_count-1, MPI_INT,
MPI_COMM_WORLD);

 }

 MPI_Finalize();
}

Figure A2: Parallel implementation of 1-dimensional array transpose: GA version shown on the left and MPI
version on the right.

